
// Assignment 3 

/ The Low-Level Programmer 

// by George Hotten 
  

  



 Assignment 3: The Low-Level Programmer  George Hotten 

 1 
  

// Polling and Interrupts 

// Polling 
 Polling is where the CPU regularly checks whether a device or peripheral needs attention. This 

can take up multiple cycles and wastes valuable processing time.  

 If a device does need attention the CPU ceases what it was currently doing and attends to the 

needs of the I/O device before continuing executing instructions.  

// Interrupts 
 Interrupts are signals from outside of the CPU that notifies it that a device needs attention, 

which is checked for at the end of each cycle. This enables the CPU to check for interrupts at the 

same speed of the CPU’s clock.  

 If an interrupt is found, the CPU will move the contents of the program counter to a temporary 

location and then load the PC with the addresses from the Interrupt Service Routine. Once the 

CPU has finished executing the instructions, the previous addresses are moved back into the PC. 

// RISC and CISC 

// Reduced Instruction Set Computing 
 A RISC processor contains a smaller and more limited set of instructions. RISC processors are 

simpler and smaller allowing them to outperform most CISC processors as they can execute 

instructions within one clock cycle. Code for RISC programmers are often longer but simpler. An 

example of a RISC CPU is a Qualcomm Snapdragon 888. 

/  Advantages 
/ Smaller die. 

/ Lower TDP. 

/ Less heat. 

/ Faster performance. 

/ Pipelining can be achieved. 

/ More cost effective. 

/ Disadvantages 
/ Performance is dependent on code quality, if instruction scheduling is poor the processor  

will spend more time waiting than executing code. 

/ Lengthy code, RISC processors don’t have the luxury of complicated actions within one 

instruction meaning code becomes very lengthy when writing complex applications. 

// Complex Instruction Set Computing  
 A CISC processor contains a larger and more complex set of instructions. CISC processors are not 

as efficient as RISC processors are multiple cycles are taken up executing instructions. CISC 

processors reduce the complexity of programs as complex instructions are housed into a single 

instruction. An example of a CISC CPU is an AMD Ryzen 5800X. 

  



 Assignment 3: The Low-Level Programmer  George Hotten 

 2 
  

/ Advantages 
/ Simpler programs with less instructions. 

/ Easier to program in. 

/ Microprogramming is easy to implement. 

/ Less complicated compiler. 

/ Disadvantages 
/ Basic operations can be slow. 

/ Calling functions can reduce performance. 

/ More expensive to buy. 

/ Larger die. 

/ Higher TDP. 

/ Hotter temperatures. 

// The Fetch Decode Execute Cycle 
 The Fetch Decode Execute cycle is the process used by the CPU to retrieve, understand, and 

execute instructions from the operating system and programs. 

// Fetch 
 During the fetch cycle, the CPU retrieves the memory location of the next instruction from the 

program counter. Using the address bus, the CPU requests the contents of the memory location 

and receives it over the data bus. This instruction is then stored in the Instruction and Address 

register. The program counter is now incremented by one in preparation for the next cycle. 

  

  



 Assignment 3: The Low-Level Programmer  George Hotten 

 3 
  

  

// Decode 
 After the instructions have been stored in the CPU’s registers, the CPU translates the opcode to 

its corresponding action. For example, if the CPU has 5 in the Instruction register and 6 in the 

Address register this was translate to LOAD from Address 6. 

  

  

// Execute 
 Now the CPU knows what to do, it executes the instruction. In this case, loading the data from 

address 6 into the accumulator.  

  



 Assignment 3: The Low-Level Programmer  George Hotten 

 4 
  

 After the execute stage has been finished, the CPU checks to see if an interrupt has been sent. If 

an interrupt has been sent, the CPU moves the contents of the PC to a separate location and 

loads the addresses of the interrupt’s instructions into the PC. The CPU will execute those 

instructions using the same steps from above and then resume operations by restoring the 

previous contents of the PC. 

// FDE Example: Adding two numbers together 

  

// Instruction Zero: Load number into the accumulator 
 The CPU fetches and decodes instruction 506 into LOAD from Address 6. This stores 5 into the IR, 

6 into the AR and 70 into the accumulator as that is the contents of address 6. 

  

  



 Assignment 3: The Low-Level Programmer  George Hotten 

 5 
  

  

// Instruction One: Add number to the accumulator 
 Now the CPU fetches and decodes instruction 107 into ADD from Address 7. This stores 1 into 

the IR, 7 into the AR. The CPU then fetches the 21 from the contents of address 7 and puts it into 

the ALU along with 70 from the accumulator. The result, 91, is then stored back into the 

accumulator. 

  

// Instruction Two: Output the result 
 The CPU now resolves instruction 902 into OUTPUT to the user. This outputs the contents of the 

accumulator to the user.  

// Instruction Three: Halt the program 
 Finally, the CPU resolves instruction 000 to HALT and ends the program. 

// Decision Making and Branching in ASM 

  

 This program asks for the user to input two numbers and then displays the largest number. This 

works by subtracting the first number from the second number, if the number is positive the 

second number is largest. If the accumulator is negative the first number is largest. This decision 

is done via the BRP operator which checks if the accumulator is positive. If it is, it jumps to the 

ylar function. 

 To see the code working, please review: https://this.is-a-professional-

domain.com/8dsxAPw.mp4.  

https://this.is-a-professional-domain.com/8dsxAPw.mp4
https://this.is-a-professional-domain.com/8dsxAPw.mp4


 Assignment 3: The Low-Level Programmer  George Hotten 

 6 
  

// How the width of system buses affect processor performance and 

complexity 
 The address bus and data bus are used to request and receive data from memory respectively. 

This is important as memory is the primary location where instructions and program data are 

stored and is what the CPU accesses the most. Therefore, the performance of these buses is vital 

to the speed of the system. 

/ What is a bus? 

 A bus is a set of parallel wires or connectors that are used to transport data between the 

processor and another component, such as memory or I/O. 

/ What is the width of a bus? 

 The width of a bus is the number of bits it can transmit per cycle. 

// How does the width of a bus affect performance? 
 As the width of a bus dictates the number of bits that can be transmitted per cycle, having a 

larger width allows for more data to be transferred. For example, a 64-bit bus can transmit twice 

as much data as a 32-bit bus per cycle. 

 With an increased address bus, more memory can be installed into the system as the CPU can 

address more locations over the bus. Similarly with an increased data bus, the CPU can receive 

more complicated instructions and data allowing for each address in memory to store more data 

freeing up other addresses.  

/ Does a large bus width always increase speed? 
 No, it does not. This is because with the increase of the bus width more data must handled by 

the CPU per cycle which can slow it down if it was not designed for the larger amount of data. 

Often, if the speed of the bus is higher a lower bus width doesn’t affect the performance as it 

can transfer data at such a high speed. 

// How does a larger bus width affect processor complexity? 
 The larger the bus width means the more wires and more processing is required by the CPU. For 

example, a 256-bit bus would require 256 wires going from the CPU to the destination device. 

This takes up more space on the motherboard and requires the CPU to be able to processes 

more data per cycle. If the CPU cannot keep up the amount of data being received by the bus it 

could stall and slow down the CPU. 

 


