

Computer Systems Architecture

Assignment 1
The Devil is in the Data

George Hotten

Assignment 1: The Devil is in the Data George Hotten

1

Complete the Sentences – Converting from Denary
Numeric data is stored in a computer system in the following forms shown below. These are used

because computers cannot represent numbers in traditional forms as computers function using

electrical signals, which can only be on or off. This means computers can only store data as 0s and

1s. Therefore, base 2 was created to represent numbers with just two values: 0s and 1s.

Converting from Denary
Here is an example of converting 74 into the following number systems:

Binary (base 2)

128 64 32 16 8 4 2 1

0 1 0 0 1 0 1 0

74 in binary would be 01001010 as 64+8+2=74

Octal (base 8)
First, we divide 74 by 8.

74 ÷ 8 = 9.25

Now we identify the remainder.

8 × .25 = 2 – 9R2

Now we divide 9 by 8.

9 ÷ 8 = 1.125

Now we identify the remainder

8 × .125 = 1 – 1R1

Now we divide 1 by 8.

1 ÷ 8 = 0.125

With remainder of 8 × .125 = 1 – 0R1

Reading our results backwards and using the remainders (0R1, 1R1, 9R2), we can confirm 74 in octal

is 112.d

Hexadecimal (base 16)
Let’s start by reusing our table from binary and splitting it into chunks of 4 bits.

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

0 1 0 0 1 0 1 0

Now from each 4-bits, we can produce a hex number.

From the first (furthest to the left) 4 bits, the only ‘on’ bit is from 4. So our first hex digit will be 4.

In our second set of 4 bits, 8 and 2 are ‘on’. By adding 8+2 we get 10, which cannot be represented

in hex. Therefore, we switch it to an A, making that our second digit. This is because hex can only

represent 0-9 in denary. Anything higher becomes a letter, up to F (15). For example, 10 – A, 11 – B,

up until F – 15.

This confirms that 74 in hexadecimal is 4A.

Assignment 1: The Devil is in the Data George Hotten

2

Complete the Sentences – ASCII
The characters on a computer keyboard are stored on a computer system in binary but represented

as hexadecimal. For example, in ASCII A is represented as 0x41 (hex) but stored as 1000001.

Hexadecimal is used to make it easier to read and understand ASCII.

“Computer” in ASCII
To help me, I will use the following ASCII table:

Source: https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

C o m p u t e r

43 6F 6D 70 75 74 65 72

Please continue overleaf.

https://commons.wikimedia.org/wiki/File:ASCII-Table-wide.svg

Assignment 1: The Devil is in the Data George Hotten

3

Sound and Bitmaps – how are they converted and stored?

Sound
As with all data on a computer, it must be stored in binary so computer can process it. This is done

via an Analogue to Digital Converter (ADC). Microphones capture changes in air pressure, which is

translated into electrical voltages, then digitised to bytes of data via the ADC.

Time and Amplitude
The ADC samples (see below) soundwaves received at a fixed rate and measures the amplitude

(height) of the wave. The recorded sound at each sample is converted to the closest numeric

equivalent.

Sample rate
Sample rate is the number of samples of audio recorded per second. A higher sample rate means the

amplitude is measured more times per second, and thus a higher quality audio file. Sample rate is

measured in hertz.

Here is an example of a sample rate of 1hz.

Compared to a sample rate of 2hz.

Assignment 1: The Devil is in the Data George Hotten

4

The advantages of a higher sample rate are that it can increase the resolution of digital audio signals,

and that it can allow for a greater range of frequencies to be captured. The disadvantages of a higher

sample rate are that it can require more storage space, and that it can increase the amount of data

that must be processed.

Bit depth
Bit depth is the number of bits used to store each sample. A typical bit depth is 16, allowing for a

resolution of over 65,000 values. However, for better quality audio 24 bits are used, allowing for

over 16 million possible values.

Bit rate
Bit rate is the number of bits that are processed per second. Higher bit rates mean more data can be

processed per second allowing for higher quality audio. Bit rates are measured in kilobits per second

and can be calculated by sample rate × bit depth.

Bitmap Graphics
So that images can be stored on computers, they are broken down into picture elements (pixels).

Pixels and Colour
A pixel is the smallest individual element in a bitmap image. A pixel contains information about the

colour of the image at that specific point. The colour is generally represented by a combination of

three colours: red, green, and blue (RGB). This is stored in a binary value known as the “bit-plane”.

Every bit doubles the number of colours available. For example, 1 bit gives two colours, whilst 2 bits

give 4 and 3 bits give 8.

A 1-bit image would give us monochrome: 0 for white and 1 for black.

This is an example of an 8 x 9 pixel image using 1-bit colour.

Resolution and Pixels
The resolution is the number of pixels in an image, meaning the more pixels you have the higher

quality the image. Usually, resizing a bitmap image makes it more pixelated as the pixels must be

expanded to fill the extra space.

The number of pixels in an image can be measured in pixels or megapixels. For example, a photo

that has a resolution of 3024 x 4032 would have a total of 12,192,768 pixels or 12 megapixels.

Assignment 1: The Devil is in the Data George Hotten

5

Image Storage
These images are stored with scan lines, meaning each line is encoded left to right, top to bottom.

Our image’s scan lines would look like this.

Image Metadata
To enable the computer to interpret the image, the following needs to be stored:

- Colour depth – this is the number of bits that represent each pixel.

- Resolution – the is the width and height of the image in pixels.

File Compression
When increasing the resolution and colour depth of an image, the file can skyrocket in size. This

makes it difficult for images to be shown on the web for people with slower connections or making it

more difficult to send and receive images. This is where compression comes in.

Lossy Compression

This compression loses some quality, usually by reducing the colour depth from 24 bits to 8bits. A

typical lossy compression filetype is a JPEG.

Lossless Compression

This compression loses no quality, and functions by using a data compression algorithm that allows

the receiver’s device to fully reconstruct the image. A typical lossless compression filetype is a PNG.

Please continue overleaf.

Assignment 1: The Devil is in the Data George Hotten

6

Converting between Number Systems

Denary to Binary

123

128 64 32 16 8 4 2 1

0 1 1 1 1 0 1 1

64+32+16+8+2+1 = 123

01111011

252

128 64 32 16 8 4 2 1

1 1 1 1 1 1 0 0

128+64+32+16+8+4 = 252

11111100

9.125
Step one: 9 to binary

128 64 32 16 8 4 2 1

0 0 0 0 1 0 0 1

1001

Step two: .125 to binary

Calculation Result Binary (1 if whole
number)

.125 x 2 0.25 0

.25 x 2 0.5 0

.5 x 2 1 1

.0 x 2 0 0

.0 x 2 0 0

00111

1001.00100*2^0

Normalization: 1.00100100*2^3

Converting the exponent – 2^3

3 + 127 = 130

128 64 32 16 8 4 2 1

1 0 0 0 0 0 1 0

10000010

Assignment 1: The Devil is in the Data George Hotten

7

To now format this, ensuring the mantissa 23 bits long (add extra zeros if it doesn’t!):

Sign: 0 = positive, 1 = neg Exponent Mantissa (fractional)

0 10000010 100100100

Our number is then finally 01000001010010010000000000000000

Binary to Denary

1101010

128 64 32 16 8 4 2 1

0 1 1 0 1 0 1 0

64+32+8+2 = 106

0111000

128 64 32 16 8 4 2 1

0 0 1 1 1 0 0 0

32+16+8 = 56

011.011

8 4 2 1 0.5 0.25 0.125 0.0625

0 0 1 1 0 1 1 0

2+1+0.25+0.125 = 3.375

Binary to Hexadecimal

1101010

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

0 1 1 0 1 0 1 0

4+2 = 6 | 8+2 = 10

6A

0111000

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

0 0 1 1 1 0 0 0

2+1=3 | 8

38

1000111

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

0 1 0 0 0 1 1 1

4 | 4+2+1 = 7

47

Assignment 1: The Devil is in the Data George Hotten

8

Denary to Hexadecimal

123

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

0 1 1 1 1 0 1 1

4+2+1 = 7 | 8+2+1 = 11

7B

252

8 4 2 1 8 4 2 1

128 64 32 16 8 4 2 1

1 1 1 1 1 1 0 0

8+4+2+1 = 15 | 8+4 = 12

FC

541

8 4 2 1 8 4 2 1 8 4 2 1

2048 1024 512 256 128 64 32 16 8 4 2 1

0 0 1 0 0 0 0 1 1 1 0 1

2 | 1 | 8+4+1 = 13

21D

Completing Floating Point Binary

111110100.011111
Normalization: 1.11110100011111*2^8

Converting the exponent – 2^8

8 + 127 = 135

128 64 32 16 8 4 2 1

1 0 0 0 0 1 1 1

10000111

To now format this, ensuring the mantissa 23 bits long (add extra zeros if it doesn’t!):

Sign: 0 = positive, 1 = neg Exponent Mantissa (fractional)

0 10000111 111110100011111

Our number is then finally 01000011111111010001111100000000

Assignment 1: The Devil is in the Data George Hotten

9

1000011
Normalization: 1.000011*2^6

Converting the exponent – 2^6

6 + 127 = 133

128 64 32 16 8 4 2 1

1 0 0 0 0 1 0 1

10000101

To now format this, ensuring the mantissa 23 bits long (add extra zeros if it doesn’t!):

Sign: 0 = positive, 1 = neg Exponent Mantissa (fractional)

0 10000101 1000011

Our number is then finally 01000010110000110000000000000000

110111000.100111

Normalization: 1.10111000100111*2^8

Converting the exponent – 2^8

8 + 127 = 135

128 64 32 16 8 4 2 1

1 0 0 0 0 1 1 1

10000111

To now format this, ensuring the mantissa 23 bits long (add extra zeros if it doesn’t!):

Sign: 0 = positive, 1 = neg Exponent Mantissa (fractional)

0 10000111 110111000100111

Our number is then finally 01000011111011100010011100000000

Assignment 1: The Devil is in the Data George Hotten

10

How are Floating Point Numbers Represented in Binary?
Floating points can be represented in binary using the IEEE 754 standard, which was first introduced

in 1985. The standard is made up of 3 components:

Sign of the Mantissa

Represents if the number is positive, 0, or negative, 1.

Exponent

Represents the power of the normalized mantissa.

Normalized Mantissa

This is the floating-point number. As we only have two digits in binary, a normalized mantissa has

only a single 1 before the decimal point.

Conversion Example
As an example, I will convert 37.25671 to binary using the IEEE 754 standard.

Step one: convert the digits before the decimal point to binary
First, we convert 37 into binary.

128 64 32 16 8 4 2 1

0 0 1 0 0 1 0 1

This leaves us with the binary number 00100101.

Step two: convert the digits after the decimal point to binary
This is done by multiplying the number by 2 a certain number of times for the precision we want for

our number. After multiplying the initial .25671, we take the result’s numbers after the decimal

point and multiply that by 2, and repeat. If the number is a whole number, it will be represented by

a 1, else a 0.

Calculation Result Whole Number Binary

.25671 x 2 0.51342 no 0

.51342 x 2 1.02684 yes 1

.02684 x 2 0.05368 no 0

.05368 x 2 0.10736 No 0

.10736 x 2 0.21472 no 0

 This leaves us with the binary number 01000.

This can now be represented as 00100101.01000 × 20.

Step three: normalize the number
We now normalize the number so the decimal point is in front of the first 1.

Our number is now 1.0010101000 – with the leading zeros removed.

As we moved the decimal point 5 places, our exponent will be 5, making our new number:

1.0010101000 × 25.

Assignment 1: The Devil is in the Data George Hotten

11

Step four: convert the exponent
To convert the exponent, we must first add it to 127. In this example, 5 + 127 = 132. We now convert

this into binary.

128 64 32 16 8 4 2 1

1 0 0 0 0 1 0 0

This means our exponent is 10000100.

Step five: formatting the number
Finally, we can format our number in the following order: sign, exponent and mantissa, ensuring that

the mantissa has a total of 23 bits.

Sign: 0 = positive, 1 = neg Exponent Mantissa (fractional)

0 10000100 10010101000

This leaves our final number as 01000010010010101000000000000000.

Logic Gates and Truth Tables

AND

The AND gate takes two inputs, and only outputs a 1 when both inputs are 1.

Assignment 1: The Devil is in the Data George Hotten

12

OR

The OR gates takes two inputs and will output a 1 when either input is a 1.

NOT

The NOT gate takes only one input and will output the opposite of its input. For example, if 0 is

inputted 1 is outputted.

Assignment 1: The Devil is in the Data George Hotten

13

NAND

Unlike the AND gate, the NAND gate requires that both inputs are not on to output a 1. If both

inputs are a 1, a 0 will be inputted.

Assignment 1: The Devil is in the Data George Hotten

14

NOR

Unlike the OR gate, the NOR gate requires that all inputs are off to output a 1. If any input is a 1, the

output will be a 0.

Assignment 1: The Devil is in the Data George Hotten

15

XOR

The XOR gate will only output 1 if one input is a 1 whilst the other is a 0. If both inputs are 0 or 1, the

output will be a 0.

